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The problem of the relationship between the Schwarzschild and Tolman metrics 

has occupied the attention of many workers. Although the solutions given in 

lJ - 31 satisfy the equations of the general relativity theqry (OTO) (‘) , they 
contradict the correspondence principle. This means that for G -+ 0 , the inter- 
val is not transformed into the interval of the special relativity theory (CTO) 

(* ) , while for .C -+ 00 , the solutions do not become Newtonian. This is apparent- 
ly caused by the unfortunate choice of the coordinates in the Tolman frame of 

reference. Papers [4, 51 illustrate particular cases of a correct passage from one 
metric to the other. 

In the present paper a general method of obtaining solutions is proposed in 
which the passage from one frame of reference to the other satisfies the corre- 

spondence principle. 

The intervals in the co-moving frame of reference and in the central frame of refer- 

ence are, respectively, 
- ds2 = - c2d+ + eWdR2 + r2dQz 

- dG = - evc2dt2 + ehdr2 + rzdQ2 

(dCP = diY + sin%d@) 

(1) 

(2) 

Since r = r (CT, R) and ct = ct (CT, R), we have 

dr = r’cdt + r’dR, cdt = ct’cdt + ct’dR 

(r’ = &/&, r’ = ar / aR, ct’ = cat I cat, ct’ = cat I aR) 

Substituting these differentials into (2). equating the coefficients accompanying c2dt2 

and dR2 and remembering that the coefficient of 2cdtdR is zero, we obtain 

” 2 '2 e c t -raeh=l, e?.r'2 - &'=t? = ,o ehr'r'_ct'c.tre" _- 0 

from which, eliminating eb and e”, we have 

e” = e” / (rf2 _ r’2e0), ey = rg2 / [C2ta2 (~‘2 _ r’ze”)] 

(e”ct’r’ - ct’r’) (ct’r’ - ct’r’) = 0 

(3) 

(4) 

*) Editors note. The abbreviations (OTO) and (CTO) are used in the relevant Soviet 
literature and stand for “general relativity theory” and “special relativity theory”, respec- 
tively. 
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The expression 
A, = r’ct’ - r’ct’ zzz a (r, ct) 

8(K, CT) = exp 
w-@+V) 

2 (5) 

is the Jacobian of the transformation from the system (1) to the system (2). The trans- 
formation is allowed when A,, # 0, therefore from (4) we have 

&t’r’ - ct’r’ = 0 (6) 

In the computations that follow, it is convenient to pass to the independent variables 

R and r. Then I 
r’ z - 

CTR 

CZr ’ 
lJ=-- 

CTs, ’ 

Moreover, we can easily compute crR . In fact, 

We have the following relations 

Consequently 

S(’ +q8’*dr +{(cr-rT,,,-2[(f +$)-“*r-(cr-cer”)]}= 
$ p (CT - C%l) - ( -q-‘” 2r] f + 

and therefore 

For F = rg = const , we have 

f’ czn - CfOR = - 
f 

- + (CT -m,+[f +y-T] 

From (6) we obtain 
CTR cTR a (CT, Ct) 

t? = (ciRcf - ctRct,) 7 = - 

P 
ct ,. a(& 4 

and 
A, = ctR / ct, = -- r’ (ctR / c.t,) 

(7) 
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Further from (3) we find 

“t, _ (&,2 + ,~)%,-‘,‘2~ , ctR / cZR = at [e” (e’ + c~-~~J]-*‘~ 

and this finally gives 
P=c 2 2 

zR 
2 

(C zr 
a-, 
) 

( ,-A 1 1 -1 

+r 
C% 53 

= C2ZRV(2Tr2 + ey-1 

For eY=e-A=l-rg/r andF=rg,wehave 

em = r” (1 + f)-’ = A02 

The converse problem is also easily solved. Knowing 

em = rt2 (1 $- f)-l 

we find from (4) 

From this it follows that 

or 

and 

This determines 

ct = ct (r, R), e” = 1 - 4 c*zR2 [(i + f) CztR2]-i 
i ) 

ct’ = 2 (1 + f) (I + q-’ 

For I; = rg , we have 

eA= I---, ( ! r&? rg 
r 

e’=i-1, CZR = (1 + j)“W~, 

ct. = (1 + f)?: 1 + $ 
( ) 

-1 

When solving the Friedman problem we have, e. g. for a closed model for p = 0 

e” = a2 /4a02, r = a sinX, R = 20,X, F = 2n,sin3X 

(8) 

and Eqs. (8) determines ct = ct (r, R), after which tv is determined. 
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Let us now solve the Schwarzschild problem in the Tolman metric, using the follow- 
ing important principles. 

1) Since at the limits the Einstein equations pass into the interval of the special 

relativity theory and of Newtonian laws, and then to that of Galilean mechanics, and 
because the sequence of such transitions is immaterial, these requirements (the principle 
of correspondence) must be also satisfied in the Tolman metric. 

2) The Jacobian A,, # 0 of the transformation does not tend to infinity over the 

whole region in question (except at the singularities), nor during the limiting passages 
to the special relativity theory, to Newton’s theory and to the Galilean transformations. 

3) If the given region is covered in one frame of reference by n “maps”, then this 

number is preserved in the other frame of reference. Since only the allowed coordinate 
systems are used here, the class of functions remains unchanged on the passage from one 
system to the other. It is usually assumed that the coordinate transformation Xi refers 

to the class of functions c@) and the transformations &?ik to the class c(i). 
Since cr, = (f + rg / r)-%, where 1 + f > 0, then 

f (CT - no) = (fr2 + rgr) ‘i2 - rg (-f)-“’ arcsin (- rf / rq)‘;‘, f < 0 

3/2rg1i’ (CT - CTo) = r"l', 

f (CT - CQ) = (fr2 + r B I = Cl 

(9) 

l,'% - rg (f)-“’ arc& (ff i rg)“‘, f > 0 

Let us consider these three modes of motion separately. 
1’. For f < 0 , we have an “elliptic” motion. For CT = 0 , it is necessary and 

sufficient to set r = R (the Euler and Lagrange coordinates coincide) and 

dr / cdt =- (u / c) = (f f rg / r)“’ = 0 

and this yields all possible motions. From the above conditions we have 

(10) 

We note that R is determined with the accuracy up to a consonant, therefore we can 

e.g. set r = R f rg for CT = 0. Then in the formulas (10) R should be replaced by 

R + pg. In the present case h + v = 0, therefore it follows from (5) 

Ao++ Z-&-C, n( ‘;$?;r)” 
(11) 

where c’tR is determined by (7). 
Since 

f = ~ rg (R -t rg)-‘, CT,, = - (R + rg)“‘r~‘~‘< 

then 

(12) 

Ao =$ [,($--arcsin1/%) + 
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V( r 1 -+ 11 + r [R (R + r,)]+’ 

It can easily be verified that (12) determines the Jacobian A,, which satisfies all the 

requirements formulated above. Thus the solution given is perfectly correct. The Jaco- 
bian A0 is finite everywhere except at the center R = 0 which naturally is a singular- 
ity for rg =O (G = 0 or c + oo), R = r, and A, = 1. 

We now turn our attention to the solution of the present problem given by Novikov in 

[l]. In his solution the scale of the Lagrangian coordinate chosen is different, namely 
.f = -rga(2_aftg2)-l. His Lagrangian coordinate F is related to the coordinate used in 

the present paper as follows: @ = ~~~~ do J d7i = 2Ti 1 rg and we also have 

x 
cz,?i=_ $(E2 + y)%- 

r&?2 

By choosing the Lagrangian coordinate in this manner, the author of [l] succeeded in 

achieving the so-called completeness for his solution: As the result of this completeness, 

the world line of any particle moving ‘in the Schwarzschild’s field either lies on a cen- 
tral singularity (r = 0), or vanishes at infinity. Moreover, the solution of maximum 
completeness is an analog of the Kruskal solution and this, in the opinion of the author, 
is a significant achievement. It can however be shown that this completeness contra- 

dicts the correspondence principle. The Novikov coordinate system is inadmissible in 
this sense for the reason of ambiguity in the choice of the Lagrangian’s coordinate: for 
rg + 0 (G = 0 or c -+ w),AO --f 00. In fact, Novikov gives 

A,=& 
Hz f rg2- rrg X2 + rg2 

X ? rg 

and when rg - 0 , we have 

277 3 22 -=- 
r&7 2 n.,,,-+oo r i2r 

g 
<P 

In [2] the authors assert that the coordinates (7, t , or any others) can be subjected to 

any transformation. It is this assertion that was used by Novikov. It is however known 
that the coordinate transformations cannot be arbitrary ; they must preserve the calss of 
functions. Novikov obtains two spaces : one for n’ > 0 and another for r< 0, and the 
second space adjoins the first one along the line z = 0. But in this case clH/&-0, the 
uniqueness is clearly violated and the “second” space is merely a mathematical dupli- 
cate of the “first” one. In our formalism, there is no “second” space. 

Further, when c + 60 or G = 0 , the correspondence principle is not satisfied in the 
Novikov’s work and $ = 2GM [(i / r) _ rg / (3 + -c2)]. For c --f 00, u2 = 2CM / r and, 
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in contrast to our formalism, all elliptic motions vanish on passing to the Schwartzschild 
theory. It would seem that the Novikov’s requirements concerning the physical sense of 

two (or four) spaces in a Kruskal type metric can be reconciled with the observance of 
the correspondence principle if we set f = - ‘g (B*z + r&?*. Then 

R =-rg+(R*2+rgz)‘2 

n 

and all correspondence principles hold. But 

fR* R* 3x II” 
-=- 

f 
‘To,<* := - - 

4 

Therefore when R* = 0 

and the “second” space is again found to be a mathematical duplicate of the “first” one. 
2O. For f = 0 we assume that when CT = 0 , P = RSrg (or P = R, it makes no dif- 

ference), then we have 

r*/r = (R $- ‘J 2 -f 3/+ z, 
2 (li + rJ3.‘2 

CT0 = T 3 
rK 

I* 

v2 = 2GM / r, r’ _ (R + &Zr--“‘2 = A0 

This solution fulfills all the requirements given above. 

Earlier, Lemaitre and Rylov [3] made the substitution czo = - R which gave ?‘I* = 
“is (rs)“’ (R f CT), but in this case r’ = (rgr-l)‘iz= AO. Assuming c + CO or G = 0 we see 
that in this case the correspondence principle also is not fulfilled, consequently the 
choice of czO is unsatisfactory. 

3’. For f > 0 setting cz = 0 and r = R + rg (or r = R), we specify that when 

r + 00 , U/~ = f’ 2 = v,, (R)’ / c which defines f = I+,” / 3. Further, setting CT = 0 

we find from (9) CTO and this solves the present problem completely 

Let us now compute the three-velocity in the central frame of reference. We know 

that 
U2 f+r,lr 

-- 
3- l+f ’ 

U=C when r=r &? 

2GMr-1, f=O 

u2= 2GMrmp(R + rg - r) R-1, f<O 
(2GMr-1 + v?) / (1 + VO~C-~), f > 0 

Since u = c when r = rg, this implies that the Schwartzschild sphere is a real sin- 

gularity. The energy of any sample particle for the metric (1) 
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tends to infinity ( 1/- g,, = 1). In theschwartzschild metric we had a coordinate sin- 

gularity but the energy in the constant field was conserved, in the Tolman metric the 
coordinate singlarity is removed but the energy causes certain difficulties at the Schwartz- 

schild radius. 
Since 

fia= R. 
tlkm 

Rizkm = 12rg2/ r6 N x?sg2 

where a#.is the density of the gravitational field energy, we have 

m r’g I/s MC8 
a =-= 
g xr 2nra 

For r = rg we have 

eg= VE XT= 
a 

,fLz 7 

while for M = rnL = [A (2G)-1]“1 = idm6 g, we have 

eg N ~7 / 6% N 10115 erg/cm3 

which corresponds to the density of the quantum-gravitational plankton particle. 
For M N 103b which corresponds to the mass of the proposed black hole we obtain 

% -v 35 erg/cm3 which corresponds to the energy density of a nucleon. When the mass 
is less than 1036, the quantity Ed exceeds the energy density given above. But at such 

densities of energy the classical theory of gravitation is not applicable any more and 

the quantum theory must be used instead. 
We can derive a basic conclusion stating that the investigation of singularities on the 

Schwartzschild sphere cannot be performed within the framework of the classical theo- 
ries. The general theory of relativity is valid for an external field only when r > rg. 

We note that the metric (1) can be reduced by coordinate transformation to another 

form suitable for analysis. Let CT = CT (r, R), then cdt = cT,dr +c~ndR.From (1) we 
have 

- c@ = - 2cT$rRdrdR $ (e” - c%kz) dRZ -- c2t2,.dr2 + r2dQ2 

hence, we find e.g. for the case f = 0, rals = fi’ 2 + 3/2rg”~ CT , that 

cZr = (rrg-l)"*, czcH = - (Rr -1 '12, e" 
g) = Rlr 

Thus the metric (13) can be reduced to 

- dg = 2 (rR)f”rg-ldrdR + Rrgbl (rgr-’ - 1) dR2 - rrg-ldr2 $ r2dQ2 

Introducing new coordinates 

drl = (rrg-l)lhdr, dR, = (Rrg-l)’ ‘dR 

we obtain from (141 

(13) 

(14) 

Further, setting 
(2rg)a (3r,)+ : 7agrm3, dR, = dR 

we can finallv write the metric in question, using the coordinates r and R, in the form 
r’,‘l 

dR=+2.,,t 
rg 

dr d R - G dr2 + r’dna 
rK 
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The singularity appearing in this metric at r = rg is retained in the coefficient accom- 
panying cIR?:, 

Let us see what results can be obtained from a closed, isotropic Friedman’s model. 
Since r =- Q sin)! and R = 20,x, we easily obtain 

Knowing that P* = acos~, we have r‘ = rR = a (2&1~o~~. At the same time from 
YW = r‘s / (1 + f‘, ( remembering that f = - sinax ), we find e” r (CL / 20,)~. Substitu- 
ting the values for CT,., c$ and e* into (13) we have 

which is convenient e. g. for writing out the equations TF, k = 0 when two quasi-linear 

equations defining E and u can be obtained simultaneously. 
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The regular precessions of a heavy asymmetric gyrostat are found by direct 
integration of the system of Zhukovskii equations written in the principal axes 
of inertia. The properties of these motions are investigated ; the possibility of 
controlling them is revealed. Forces capable of causing a regular precession 
in the gyrostats are investigated. 

An idea was developed in [l] on the preferability of investigating the mo- 
tion of a heavy gyrostat fixed at one point before the investigation of the mo- 
tions of the classical rigid body (*) (see footnote on the next page). 


